
A Framework for Resolving Open-World Referential Expressions
in Distributed Heterogeneous Knowledge Bases

Tom Williams and Matthias Scheutz
Human-Robot Interaction Laboratory
Tufts University, Medford, MA, USA

{williams,mscheutz}@cs.tufts.edu

Abstract

We present a domain-independent approach to reference res-
olution that allows a robotic or virtual agent to resolve ref-
erences to entities (e.g., objects and locations) found in open
worlds when the information needed to resolve such refer-
ences is distributed among multiple heterogeneous knowl-
edge bases in its architecture. An agent using this approach
can combine information from multiple sources without the
computational bottleneck associated with centralized knowl-
edge bases. The proposed approach also facilitates “lazy
constraint evaluation”, i.e., verifying properties of the refer-
ent through different modalities only when the information
is needed. After specifying the interfaces by which a refer-
ence resolution algorithm can request information from dis-
tributed knowledge bases, we present an algorithm for per-
forming open-world reference resolution within that frame-
work, analyze the algorithm’s performance, and demonstrate
its behavior on a simulated robot.

Introduction
For robotic or virtual situated agents to effectively engage
in natural language interactions with humans, they must be
able to identify the people, locations, and objects mentioned
by their human interlocutors. This ability, known as refer-
ence resolution (Garrod and Sanford 1994), is necessary in
order to discuss or carry out actions involving those people,
locations, and objects. In a robotic or virtual component-
based integrated agent architecture (e.g, DIARC, Scheutz et
al. 2013, or ROS, Quigley et al. 2009), knowledge may
be localized within different components instead of being
centralized in a single knowledge base (KB). This paper
presents an approach to solving several unique problems that
arise when knowledge is distributed in this manner.

Information in an integrated architecture may be decen-
tralized for a variety of reasons. First and foremost, there
simply does not exist a single knowledge representation for-
mat that would allow a robot to efficiently deal with all rep-
resentation and reasoning tasks it must perform. For exam-
ple, information about entities recognized by a vision com-
ponent will likely be stored in a substantially different man-
ner than the map produced by a mapping component.

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Furthermore, accumulation of knowledge into a central,
homogeneous KB can create a bottleneck where computa-
tional resources become focused onto a single “stress point”
rather than balanced across the architecture’s components.
It may make more sense, for example, to keep information
about visual features such as pixels, textures, and edges lo-
calized to the vision component where they are actually pro-
cessed and needed.

Finally, knowledge may be decentralized to facilitate
“lazy evaluation”. For example, consider a mapping com-
ponent responsible for performing SLAM. On request, this
component may be able to determine whether one location is
“to the left down the hall” from another location, or whether
two locations are within a five-minute walk of each other.
However, it may not be necessary to make such decisions
until explicitly requested. If knowledge is centralized in a
single KB, then this information must be precomputed and
asserted into the knowledge base if it cannot otherwise be in-
ferred – a potentially unnecessary expense if the information
is expensive to compute and unlikely to be requested.

The use of a distributed knowledge representation
scheme, however, also presents several challenges. For ex-
ample, multiple aspects of an entity may be spread across
multiple KBs (e.g., visual aspects in the vision component,
action-based aspects in the manipulation component, lin-
guistic aspects in the NLP component, etc.), and each such
KB may have its own form of representation (i.e., whatever
form is most natural for the internal operations of that com-
ponent) and its own way of evaluating queries (especially
when “lazy evaluation” is employed).

Furthermore, it may be difficult to determine which KB
should be queried in order to resolve a particular referential
expression. For example, if an interlocutor says “the ball
is in it”, it may not be clear whether candidate entities to
associate with “it” should be drawn from the set of objects
known to the vision component or from the set of locations
known to the mapping component.

The rest of this paper proceeds as follows. We first discuss
previous approaches to reference resolution under differ-
ent knowledge representation schemes. We then introduce
a framework that allows information from domain-specific
resolution techniques to be used together without the need
for a centralized KB. We then present an algorithm for per-
forming reference resolution within that framework, analyze

its performance, and demonstrate its behavior on a simulated
robotic agent. Finally, we discuss the results of our analysis
and directions for future work.

Previous Work
Reference resolution in robotics has attracted much atten-
tion over the past decade. Previous approaches have typi-
cally fallen into one of two categories. We term the first cat-
egory domain-independent resolution. Approaches in this
category (e.g., Kruijff et al.; Heintz et al.; Lemaignan et
al.; Daoutis et al. 2007; 2008; 2011; 2009) typically use
a central KB in which information about disparate types of
entities are stored in a homogeneous format. Techniques
such as graph matching are used to resolve natural language
references to entities stored in that KB. These resolution
techniques may not be as effective as domain-specific tech-
niques as they are only able to utilize information that can be
encoded in the lowest common denominator representation
used by the shared ontology (Gray et al. 1997).

We term the second category domain-dependent resolu-
tion. Approaches in this category focus on resolving specific
types of references (e.g., spatial reference resolution, Moratz
and Tenbrink; Williams et al.; Hemachandra et al.; Kollar et
al.; Zender et al.; Shimizu and Haas; Chen and Mooney; Ma-
tuszek et al.; Fasola and Matarić 2006; 2013; 2011; 2010;
2009; 2009; 2011; 2012; 2013, action resolution, Kollar et
al.; Hewlett 2014; 2011), and use techniques that are specific
to their target domain. For example, in (Fasola and Matarić
2013) “semantic fields” are used to interpret descriptions
such as “near the kitchen” or “around the table”, a technique
which might not generalize to other resolution tasks. Also
in this category are approaches like that presented in (Tellex
et al. 2011a), which are general in principle but which must
be trained to apply to a single target domain.

In recent work, we presented POWER, a hybrid approach
(Williams and Scheutz 2015a; 2015b) in which a domain-
independent reference resolution algorithm (of the first cat-
egory of approaches) made use of a domain-dependent con-
sultant that provided capabilities typically found in the sec-
ond category of approaches. This is similar to mechanisms
found in the knowledge representation literature (e.g., proce-
dural attachment, Bobrow and Winograd 1977) and in some
cognitive architectures (e.g., PRODIGY, Veloso et al. 1995).

In this work, we present a framework which extends
POWER to handle multiple consultants distributed across
the architecture, thus preventing a computational bottle-
neck. While the use of architectural components to inter-
cede between distributed hierarchical knowledge bases dur-
ing querying and assertion is not new per se (c.f. Gray et al.
1997), we believe this to be the first use of such an approach
in a robotic architecture.

Framework
Assume a robotic archtiecture includes a set of n heteroge-
neous KBs K = {k1, ..., kn}. Each KB ki is managed by
a consultant ci from C = {c1, ..., cn}. Each consultant per-
forms four functions:

1. advertising the constraints it can evaluate and impose,

2. providing a set of atomic entities from its KB,
3. calculating the likelihood that a given constraint holds for

a given set of atomic entities, and
4. adding, removing, or imposing constraints on its KB.

A referential expression in this framework is formu-
lated as a set of constraints S = {s1, ..., sn} where each
s ∈ S specifies a relationship (sr, sV) named by sr

and parameterized by sV = {sv1 , ..., svn}. For exam-
ple, “the ball in the box” might be encoded as the set
S = {(in, {X,Y }), (ball, {X}), (box, {Y })}, where SV =
{X,Y } contains the variables parameterizing constraints
with names ‘in’, ‘ball’, and ‘box’, determined by sV1 ∪ sV2 ∪
... ∪ sVn . The goal of reference resolution is associate each
variable in SV with an entity from the architecture’s KBs.
The first step towards this goal is to determine which KB
contains the referent for each variable.

To facilitate this process, each consultant ci advertises the
types of queries it can handle through a set of unique query
templates Qi = {qi1, ..., qin}, each of which specifies a re-
lationship (qr, qV) named by qr and parameterized by kb-
associated variables qV = {qv1:k1 , ..., qvn:kn}. Here, each
kb-associated variable qvi:ki denotes a variable vi whose ref-
erent should be found in KB ki. For example, the Visual
Consultant cO associated with KB of objects kO might ad-
vertise the template (in, {X : kO, Y : kO}), and the Spatial
Consultant cL associated with KB of locations kL might ad-
vertise the template (in, {X : kL, Y : kL}). This particu-
lar example also demonstrates how relationships that bridge
knowledge bases are handled: it is assumed that relation-
ships between pieces of knowledge stored in different KBs
will be handled by exactly one of the consultants associated
with those KBs. Here, information about the locations of
objects is advertised to be handled by the Spatial Consul-
tant. The process of associating a KB with each variable is
viewed as the process of finding the optimal mapping
t : V →K from variables in SV to KBs K, drawn from

set of possible mappings T :

argmax
t∈T

∏
s∈S

P (t|s).

Here, P (t|s) represents the probability that mapping t cor-
rectly maps variables to KBs given that s appears in S. If
a training corpus is available, P (t|s) can be calculated by
consulting the learned conditional distribution P (T |s). Oth-
erwise a uniform distribution may be assumed, and P (t|s)
can be calculated as:

P (t|s) =

{
0, if γ = 0.

1/γ, otherwise.

where γ =
∑

ci∈C,q∈Qi

|matches(q, s)|.

Here, |matches| is the number of query templates in SQ

that match constraint s (i.e., where sr = qr and where sr
and qr may be unified).

In order to determine the most likely mapping of entities
to variables, we must first obtain a set of candidates for each
variable, drawn from the appropriate KB. This is performed
by choosing the consultant cv associated with each variable

v, and requesting a list of candidate entities from that con-
sultant by calling getCandidates(cv). Each possible com-
bination of variable-entity bindings is called a hypothesis h.
The set of these hypotheses is called H . Then, the process
of reference resolution can be modeled as:

argmax
h∈H

∏
s∈S

P (s|t, h).

Here, P (s|t, h) represents the probability that constraint s
is an accurate description of the state of the world, given
variable-entity mapping h and variable-KB mapping t (as
described above). This value is calculated by the component
that advertises the relationship matching s with variable-KB
mapping t. As it will likely be prohibitively expensive to
examine every hypothesis h, we present an algorithm to ef-
ficiently search through hypothesis space H .

Algorithms
The distributed POWER algorithm (i.e., DIST-POWER, Algo-
rithm 1) takes four parameters: a query S, a set of consul-
tants C, a mapping T from the set of variables SV to the
set of KBs K managed by C, and a priority queue of ini-
tial hypotheses H . C is assumed to be sorted according to
some ordering, such as by |sVi |, so that constraints with only
one variable (e.g., (room,X)) will be examined before con-
straints containing multiple variables (e.g., (in,X, Y)), lim-
iting the size of the search space considered. T is assumed
to be sorted according to, e.g., the prepositional attachment
of the variables contained in T , as described in (Williams
and Scheutz 2015b). Each hypothesis h in H contains (1) a
set of unapplied constraints hS , (2) a list of candidate bind-
ings hB , and (3) hP = p(hB |S, T), which is used as that
hypothesis’ priority.

Algorithm 1 DIST-POWER (S,C, T,H)
1: S: list of relationship constraints
2: C: set of consultants
3: T : optimal mapping from SV → K
4: H: set of initial hypotheses
5: if H = ∅ then
6: α = S[0]V [0]
7: cα = find_consultant(C, T, S[0])
8: for all φ ∈ getCandidates(cα) do
9: push(H, {{α→ φ}, S, 1.0})

10: end for
11: end if
12: A = resolve(S,C, T,H, ∅)
13: if A 6= ∅ and (A[0])V 6= SV then
14: A = posit(A[0], C, S)
15: end if
16: return A

If H is initially empty, DIST-POWER initializes it with a
set of hypotheses {h0, ...hn} where hSi = S, hBi maps the
first variable found in S[0] to the ith candidate returned by
getCandidates(cα) (where consultant cα is determined by
find_consultant, i.e., the process described previously),
and hP = 1.0 (Algorithm 1, lines 5-11).

Resolution is then performed using
resolve(S,C, T,H,A) (Algorithm 2), which performs

Algorithm 2 resolve(S,C, T,H,A)
1: while H 6= ∅ do
2: h = pop(H)
3: s = hS [0]
4: if (∃v ∈ sV | v /∈ hB) then
5: for all φ ∈ getCandidates(cv) do
6: enqueue(H,hB ∪ (b→ c), hS , hP)
7: end for
8: else
9: ch = find_consultant(C, T, {s})

10: hP = hP ∗ apply(ch, s, hB)
11: hS = hS \ s
12: if (hP > τ) then
13: if (hS = ∅) then
14: A = A ∪ h
15: else
16: H = H ∪ h
17: end if
18: end if
19: end if
20: end while
21: if A = ∅ and T = ∅ then
22: return resolve(prune(S, T [0]), C, tail(T), H,A)
23: else
24: return A
25: end if

a best-first search over the set of possible assignments from
values provided by consultants in C to variables in S. If a
solution of sufficient probability cannot be found (line 21),
resolve tries again with a restricted set of variables (line
22), recursing until it either finds a sufficiently probable
solution or runs out of variables to restrict. This process ex-
tends the POWER algorithm (Williams and Scheutz 2015b)
in order to choose the best consultant for resolution from
a set of distributed consultants, instead of only handling a
single consultant as POWER did. We thus refer the reader
to (Williams and Scheutz 2015b) for the details of the
POWER algorithm itself. The POWER algorithm is similar
to the algorithm presented in (Tellex et al. 2011b), in
which a beam search is performed through an initial domain
of salient objects in order to identify the most probable
satisfaction of an induced probabilistic graphical model.
We chose best-first search instead of beam search as a large
number of relatively equally likely candidates may exist at
each step. When resolving a reference to some “room”, for
example, it would be imprudent to discard places that did
not fall in the top few most “room-like” candidates since
there may be hundreds of places that satisfy this constraint
to a high degree. We instead rely on a lower probability
threshold τ to keep the search space tractable.

Once resolve returns set of candidate solutions A to
DIST-POWER (line 24), that set is examined. If A is
nonempty, and if the best solution in A does not contain
candidate bindings for all variables found in S, then new
representations are posited for the entities associated with
the missing variables, as described in (Williams and Scheutz
2015b) (Algorithm 1, lines 13-14). These new representa-
tions are added to the appropriate KBs by the appropriate

consultants, and assigned new identifiers which are used to
update A before it is returned.

If A contains exactly one hypothesis, that hypothesis rep-
resents the entity likely described by the utterance. If A
is empty, no known entity matched the description, and the
robot may need to ask for clarification. If A contains more
than one hypothesis, the description matched multiple enti-
ties, and the robot may need to ask for clarification.

Proof-of-Concept Demonstration
In this section we present a proof of concept demonstration
of our proposed algorithm and framework. The purpose of
this demonstration is two-fold: First, we will demonstrate
that the proposed algorithm and framework behave as in-
tended, that is, that they allow resolution to be performed
when the requisite information is distributed across various
databases, and that they allow resolution to be performed
without knowledge (on the part of the algorithm itself) as to
(1) the format of the knowledge stored in each KB, and (2)
the techniques necessary for extracting the relevant knowl-
edge from each KB. Second, we will demonstrate that the
algorithm and framework have been fully integrated into
a robotic architecture in order to perform tasks natural to
human-robot interaction scenarios.

The proposed algorithm was integrated into a Resolver
component of ADE (Scheutz 2006) (the implementation
middleware of the Distributed, Integrated, Affect, Reflec-
tion Cognition (DIARC) architecture, Scheutz et al. 2013),
which uses a distributed heterogeneous knowledge represen-
tation scheme: the architecture has a Belief, Goal, and Dia-
log management component which tracks general informa-
tion and the beliefs of other agents, but information about
visual targets, for example, is localized in the Vision com-
ponent, and information about spatial entities is localized in
the Spatial Expert component. To implement the proposed
framework, a set of “consultants” were implemented to in-
terface with KBs of known objects, locations, and people.
Each consultant performed four functions:

1. Each advertised the types of queries it handled by ex-
posing a list of formulae such as in(W − objects, Y −
locations). This formula, for example, states that the
consultant which advertises it is able to assess the de-
gree to which some entity from the objects knowledge
base is believed to be in an entity from the locations
knowledge base.

2. Each provided a method which returned a set of numeric
identifiers of the atomic entities in its associated KB.

3. Each provided a method which, given formula p (e.g.,
in(X − objects, Y − locations)) and mapping m from
variable names to numeric identifiers, (e.g., from X and
Y to 22 and 25) would return the probability that relation-
ship p held under the variable bindings specified in m. In
this example, the appropriate consultant would return the
degree to which it believed object 22 to be in location 25.

4. Each provided a method which, given a set of formulae
with some unbound variables, would posit new represen-
tations to associate with those unbound variables, store

the knowledge of their properties represented by those
formulae, and return new variable bindings accounting for
the newly posited entities.

The Resolver provided a DIST-POWER method which,
given a set of formulae S, calculated optimal mapping T
and executed the DIST-POWER (S,C,T,H) algorithm.

As a proof of concept demonstration, we examined a
robot’s behavior in interpreting the utterance “Jim would
like the ball that is in the room across from the kitchen”
(assumed to be uttered by an agent named “Bob”). This ut-
terance is represented as:
Stmt(Bob, self, and(wouldlike(Jim,X), ball(X), in(X,Y),
room(Y), acrossfrom(Y,Z), kitchen(Z))):
A statement from “Bob” to the robot (i.e., “self”), where the
head of the and list (i.e., {wouldlike(Jim,X)}) represents
the literal semantics of the sentence, and the tail of the and
list represents the properties which must be passed to the
Resolver for resolution.

We will now describe the behavior of the Resolver R as
it follows the DIST-POWER algorithm, detailing the state of
R’s hypothesis queue at several points throughout the trace
of the algorithm. In order to provide an easily describable
example, we limited the number of entities in the initial pop-
ulations of each KB to three or four entities. The robot’s
knowledge base of locations contained a hallway and sev-
eral rooms, including a kitchen, and a room across from
it which only contained, to the robot’s knowledge, a table.
The robot’s knowledge base of objects contained the table
and several boxes and balls. We will use o as shorthand for
objects and l as shorthand for locations.
R first calculates optimal mapping T , and returns {X :

o, Y : l, Z : l}, determining that the first constraint to be
examined will be ball(X). R thus instantiates its hypoth-
esis queue by requesting a set of candidate entities for X
from the consultant associated with KB o, which produces
{o1, o2, o3, o4}. R then requests from o the probability of
each of {ball(o1), ball(o2), ball(o3), ball(o4), } being true,
and receives back, respectively, 0.82, 0.92, 0.0, 0.0. Since
0.0 < 0.1 (the chosen value of τ), the hypotheses with map-
pings X : o3 and X : o4 are thrown out, and the other two
hypotheses are returned toH , resulting in hypothesis queue:

Binding Unconsidered Constraints P
{X : o2} {room(Y), kitchen(Z), in(X,Y), .92

acrossfrom(Y,Z)}
{X : o1} {room(Y), kitchen(Z), in(X,Y), .82

acrossfrom(Y,Z)}

The next constraint to be considered is room(Y − l).
Since {X : o2} does not contain a candidate identifier
for Y , R requests the initial domain of Y from l, receives
{l1, l2, l5, l6}, and replaces the first hypothesis with a set of
four hypotheses which each have a different binding for Y
but share the original P value and set of unconsidered con-
straints. P (in(o2, li)) is then assessed for each of these four
hypotheses, resulting in, respectively, 0.82, 0.92, 0.0, 0.6.
The third hypothesis is thrown out and the others are re-
turned to H with updated probabilities, producing:

Binding Unconsidered Constraints P
{X : o2, Y : l2} {kitchen(Z), in(X,Y), .846

acrossfrom(Y,Z)}
{X : o1} {room(Y), kitchen(Z), .820

in(X,Y), acrossfrom(Y,Z)}
{X : o2, Y : l1} {kitchen(Z), in(X,Y), .754

acrossfrom(Y,Z)}
{X : o2, Y : l6} {kitchen(Z), in(X,Y), .736

acrossfrom(Y,Z)}

As the hypothesis with binding {X : o2, Y : l2} is then
the most likely hypothesis and the next constraint to consider
is kitchen(Z), Z is expanded with candidate locations, each
checked for the kitchen(Z) property. As only location 2 is
known to be a kitchen, the first hypothesis is replaced with a
single new hypothesis, with probability 0.762. This causes
the hypothesis with binding {X : o1} to become the most
probable hypothesis, resulting in the above process being
repeated for that hypothesis, producing:

Binding Unconsidered Constraints P
{X : o2, Y : l2, Z : l2} {in(X,Y), .762

acrossfrom(Y,Z)}
{X : o2, Y : l1} {kitchen(Z), in(X,Y), .754

acrossfrom(Y,Z)}
{X : o1, Y : l2} {kitchen(Z), in(X,Y), .754

acrossfrom(Y,Z)}
{X : o2, Y : l6} {kitchen(Z), in(X,Y), .736

acrossfrom(Y,Z)}
{X : o1, Y : l1} {kitchen(Z), in(X,Y), .672

acrossfrom(Y,Z)}
{X : o1, Y : l6} {kitchen(Z), in(X,Y), .656

acrossfrom(Y,Z)}

When the next best hypothesis is examined, it will be
eliminated, as o2 is not known to be located in l2. Indeed,
as no ball is known to exist in a room across from a kitchen,
all hypotheses are systematically eliminated. Once this has
finished, DIST-POWER removes the head of T and tries the
entire above process again, with T = {Y : l, Z : l} and
S = {room(Y), acrossfrom(Y,Z), kitchen(Z))}. The
elimination of X from these sets suggests that X refers to
an entity which is not yet known to the robot. This time, the
initial hypothesis queue is, after considering the first formula
in S (i.e., room(Y)):

Binding Unconsidered Constraints P
{Y : l2} {kitchen(Z), acrossfrom(Y,Z)} .92
{Y : l1} {kitchen(Z), acrossfrom(Y,Z)} .82
{Y : l6} {kitchen(Z), acrossfrom(Y,Z)} .8

After going through the same resolution process, the final
hypothesis queue will be:

Binding Unconsidered Constraints P
{Y : l1, Z : l2} {} .702

DIST-POWER then instructs the objects consultant to
create a new representation for X , the new identifier for
which is then used to update the hypothesis queue:

Binding Unconsidered Constraints P
{X : o5, Y : l1, Z : l2} {} .702

DIST-POWER then instructs both the objects and
locations consultants to maintain consistency with S

under the bindings of the remaining hypothesis h. This re-
sults in the objects consultant asserting into its KB that
o5 is a ball, and the locations consultant asserting into
its KB that l1 contains o5.
R then uses hB to convert wouldlike(Jim,X)

into wouldlike(Jim, o5). The utterance
Stmt(Bob, self, wouldlike(Jim, o5)) is then returned to
the Dialog module of DIARC’s Belief, Goal and Dialog
Management component.

While resolution confidence could be used to determine
whether to ask for clarification, we currently pass the ut-
terance directly to a pragmatic reasoning component, which
uses a set of pragmatic rules to produce a set of candidate
underlying intentions (Williams et al. 2015a). One such
rule in this set is:

Stmt(S,L,wouldlike(C,O))
[0.95,0.95]−−−−−−−→ goal(L, bring(L,O,C)),

indicating the robot is 95% sure1 that when S tells L that C
would like O, their intention is for L to have a goal to bring
O to C. The robot thus determines that Bob wants it to bring
object o5 (which is in room l1) to Jim. The robot responds
“Okay” and drives to l1 to retrieve object o5.

Quantitative Analysis
In this section we analyze the performance of DIST-POWER
compared to our previous, non-distributed, POWER algo-
rithm. This analysis is not presented as an evaluation per se,
but rather to demonstrate that the DIST-POWER algorithm,
in addition to providing new capabilities and opportunities
for easier integration, provides improved efficiency: even
without the use of heuristics and domain-dependent tricks.
This analysis is thus presented as a baseline which may be
improved upon using such heuristics. Future work should
include an extrinsic, task-based evaluation.

For this analysis we generated forty KBs: five each of
sizes n = 20, 40, . . . , 160 where n indicates the number of
entities in each KB. In each KB, half of the entries were
locations in a random floor plan (i.e., rooms, halls, inter-
sections and floors) with various properties with randomly
assigned likelihoods; the rest were objects (i.e., balls, boxes
and desks), each randomly assigned properties and room of
location. Baseline performance was assessed by measuring
the average time taken by POWER to evaluate the query as-
sociated with “the box in the room” for each set of five KBs.

We then generated forty additional pairs of KBs: five pairs
each of sizes (n1, n2) = (10,10), (20,20), (30,30), . . . , (80,80)
such that the first KB dealt with all location-based knowl-
edge and the second KB dealt with object-related knowl-
edge. Performance of DIST-POWER was established by mea-
suring the average time taken to evaluate the query associ-
ated with “the box in the room” for each set of five KB pairs.

Figure 1 shows the results of this experiment: along
the horizontal axis are the sum sizes of KBs used in each

1As indicated by the Dempster-Shafer theoretic confidence in-
terval [0.95, 0.95]. For more on our use of this uncertainty
representation framework, we direct the reader to our previous
work (Williams et al. 2015a).

Figure 1: Performance Differences

test case (e.g., “40” refers to the KB containing 40 enti-
ties used when analyzing performance without the proposed
mechanism, and the two KBs containing 20 entities each
used when analyzing performance with the proposed mech-
anism.) Along the vertical axis is the average time taken, for
each set of KBs of each size, to perform the simple query
described. From these results one may observe the perfor-
mance improvement effected through use of the proposed
algorithm: up to 3x speedup among the examined cases.

Discussion
One will notice that both algorithms show performance ex-
ponential in the number of stored entities, due to the use
of best-first search over, e.g., beam search. However, the
complexity of both algorithms when used in the real world
would likely be substantially reduced, for several reasons.
First, the consultants used by DIST-POWER did not use any
heuristics when returning the set of initial candidates to con-
sider. While these would certainly be employed in practice,
but using them here would have conflated the performance
of the algorithm with the performance of those heuristics,
which is beyond the scope of this paper.

Second, complexity would be significantly reduced by
tracking the entities in, e.g., the robot’s short term mem-
ory, and checking against those entities before querying the
robot’s knowledge bases. In fact, we are currently working
to integrate DIST-POWER into a larger resolution framework
inspired by Gundel et al.’s Givenness Hierarchy (Gundel et
al. 1993), which will both substantially reduce complexity
and allow a robot to resolve references occurring in a wider
variety of linguistic forms (Williams et al. 2015b).

We also note that in order to have a consistent evalua-
tion, the POWER and DIST-POWER algorithms were provided
with information represented in the same way. However, one
of the primary advantages of the DIST-POWER algorithm is
that information need not be represented in a single format;
the information stored in the locations knowledge base
could just as easily have been represented in a topological
map rather than as a database of formulae. In fact, this was
the case for our proof-of-concept demonstration.

Finally, we would like to discuss how the experiments

demonstrate the architectural commitments of DIARC facil-
itated by DIST-POWER. First, DIARC does not prescribe
any single knowledge representation. This is facilitated
by distributing information amongst KBs of heterogeneous
representation. Second, DIARC uses formulae for inter-
component communication whenever possible. This is fa-
cilitated by accepting queries represented as sets of for-
mulae. Finally, DIARC components should perform pro-
cessing asynchronously, with components possibly spread
across multiple computers. This is facilitated by allow-
ing information and processing to remain localized in sep-
arate components, rather than using a single centralized KB.
However, DIST-POWER is not incremental or parallelized,
aspects which would yield tighter adherence to this archi-
tectural commitment, suggesting directions for future work.

Future Work
We have already presented several directions for future
work, including parallelization, incrementalization, and em-
placement within a larger resolution framework, in order to
both increase efficiency and bring our approach closer in line
with psycholinguistic reference resolution theories. In this
section we present two additional directions for future work.

First, the probability of the best candidate referent, and
the number of possible candidate referents, should be used
to initiate resolution clarification requests. Doing this appro-
priately will require the algorithm to be able to distinguish
uncertainty from ignorance; ideally, the algorithm would be
able to distinguish between a consultant responding that it
does not know whether a certain object has a certain prop-
erty, and that consultant simply returning a fairly low proba-
bility that an object has a certain property. This could be ef-
fected, e.g., through a Dempster-Shafer theoretic approach,
similar to that seen in (Williams et al. 2015a).

Second, we will investigate the performance of DIST-
POWER when different heuristics are used by its compo-
nents, and under different constraint-ordering strategies. For
example, it may be more efficient to consider rarer con-
straints first so as to quickly prune the search space. On
the other hand, it may be more efficient to instead sort con-
straints by cost, so that expensive constraints are only exam-
ined after establishing that less expensive constraints hold.

Conclusion
In this paper we introduced a framework for performing
open-world reference resolution in an integrated architec-
ture with knowledge distributed among heterogeneous KBs.
We then presented the DIST-POWER algorithm for efficiently
searching the space of candidate referential hypotheses,
along with an objective analysis of algorithm performance
and a proof-of-concept demonstration of behavior on a sim-
ulated robot, showing how the algorithm helps address the
challenges of performing reference resolution with a dis-
tributed, heterogeneous knowledge representation scheme.

Acknowledgments
This work was funded in part by grant #N00014-14-1-0149
from the US Office of Naval Research.

References
Daniel Bobrow and Terry Winograd. An overview of KRL,
a knowledge representation language. Cognitive science,
1(1):3–46, 1977.
David Chen and Raymond Mooney. Learning to interpret
natural language navigation instructions from observations.
In Proceedings of the 25th AAAI Conference on Artificial
Intelligence, 2011.
Marios Daoutis, Silvia Coradeshi, and Amy Loutfi. Ground-
ing commonsense knowledge in intelligent systems. Journal
of Ambient Intelligence and Smart Environments, 2009.
Juan Fasola and Maja J Matarić. Using semantic fields to
model dynamic spatial relations in a robot architecture for
natural language instruction of service robots. In IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems, 2013.
Simon Garrod and Anthony Sanford. Resolving sentences
in a discourse context: How discourse representation affects
language understanding. In M. Gernsbacher, editor, Hand-
book of Psycholinguistics. Academic Press, 1994.
Peter Gray, Alun Preece, NJ Fiddian, and et al. Gray, WA.
Kraft: Knowledge fusion from distributed databases and
knowledge bases. In DEXA Workshop, 1997.
Jeanette Gundel, Nancy Hedberg, and Ron Zacharski. Cog-
nitive status and the form of referring expressions in dis-
course. Language, pages 274–307, 1993.
Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty.
Knowledge processing middleware. In Simulation, Model-
ing, and Programming for Autonomous Robots, pages 147–
158. Springer, 2008.
Sachithra Hemachandra, Thomas Kollar, Nicholas Roy, and
Seth Teller. Following and interpreting narrated guided
tours. In Proceedings of the IEEE International Conference
on Robotics and Automation, 2011.
Daniel Hewlett. A framework for recognizing and executing
verb phrases. PhD thesis, University of Arizona, 2011.
Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy.
Toward understanding natural language directions. In Pro-
ceeding of the 5th ACM/IEEE International Conference on
Human-Robot Interaction, pages 259–266, 2010.
Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy.
Grounding verbs of motion in natural language commands
to robots. In Experimental Robotics. Springer, 2014.
Geert-Jan M Kruijff, Pierre Lison, Trevor Benjamin, Hen-
rik Jacobsson, and Nick Hawes. Incremental, multi-level
processing for comprehending situated dialogue in human-
robot interaction. In Symp. on Language and Robots, 2007.
Séverin Lemaignan, Raquel Ros, Rachid Alami, and
Michael Beetz. What are you talking about? grounding di-
alogue in a perspective-aware robotic architecture. In RO-
MAN, pages 107–112, 2011.
Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Di-
eter Fox. Learning to parse natural language commands to a
robot control system. In Proc. of the 13th Int’l Symposium
on Experimental Robotics (ISER), 2012.

Reinhard Moratz and Thora Tenbrink. Spatial reference in
linguistic human-robot interaction. Spatial Cognition and
Computation, pages 63 – 106, 2006.
Morgan Quigley, Josh Faust, Tully Foote, and Jeremy Leibs.
Ros: an open-source robot operating system. In ICRA Work-
shop on Open Source Software, 2009.
Matthias Scheutz, Gordon Briggs, Rehj Cantrell, Evan
Krause, Tom Williams, and Richard Veale. Novel mecha-
nisms for natural human-robot interactions in the diarc ar-
chitecture. In Proceedings of AAAI Workshop on Intelligent
Robotic Systems, 2013.
Matthias Scheutz. ADE: Steps toward a distributed devel-
opment and runtime environment for complex robotic agent
architectures. Applied Artificial Intelligence, 2006.
Nobuyuki Shimizu and Andrew Haas. Learning to follow
navigational route instructions. In Proceedings of the 21st
Int’l Jont Conf. on Artifical intelligence, 2009.
Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth Teller, and
Nicholas Roy. Approaching the symbol grounding problem
with probabilistic graphical models. AI Mag., 2011.
Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth Teller, and
Nicholas Roy. Understanding natural language commands
for robotic navigation and mobile manipulation. In Proc. of
the 25th AAAI Conf. on Artificial Intelligence, 2011.
Manuela Veloso, Jaime Carbonell, Alicia Perez, Daniel Bor-
rajo, Eugene Fink, and Jim Blythe. Integrating planning and
learning: The prodigy architecture. Journal of Experimental
& Theoretical Artificial Intelligence, 7(1):81–120, 1995.
Tom Williams and Matthias Scheutz. A domain-independent
model of open-world reference resolution. In Proc. of the
37th annual meeting of the Cognitive Science Society, 2015.
Tom Williams and Matthias Scheutz. POWER: A domain-
independent algorithm for probabilistic, open-world entity
resolution. In IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems, 2015.
Tom Williams, Rehj Cantrell, Gordon Briggs, Paul Scher-
merhorn, and Matthias Scheutz. Grounding natural language
references to unvisited and hypothetical locations. In Proc.
of the 27th AAAI Conf. on Artificial Intelligence, 2013.
Tom Williams, Gordon Briggs, Bradley Oosterveld, and
Matthias Scheutz. Going beyond command-based instruc-
tions: Extending robotic natural language interaction capa-
bilities. In Proceedings of 29th AAAI Conference on Artifi-
cial Intelligence, 2015.
Tom Williams, Stephanie Schreitter, Saurav Acharya, and
Matthias Scheutz. Towards situated open world reference
resolution. In AAAI Fall Symposium on AI for HRI, 2015.
Hendrik Zender, Geert-Jan Kruijff, and Ivana Kruijff-
Korbayová. Situated resolution and generation of spatial re-
ferring expressions for robotic assistants. In Proceedings of
the 21st Int’l Joint Conf. on Artifical Intelligence, 2009.

